Graph Powers and Graph Homomorphisms
نویسندگان
چکیده
In this paper we investigate some basic properties of fractional powers. In this regard, we show that for any rational number 1 ≤ 2r+1 2s+1 < og(G), G 2r+1 2s+1 −→ H if and only if G −→ H− 2s+1 2r+1 . Also, for two rational numbers 2r+1 2s+1 < 2p+1 2q+1 and a non-bipartite graph G, we show that G 2r+1 2s+1 < G 2p+1 2q+1 . In the sequel, we introduce an equivalent definition for circular chromatic number of graphs in terms of fractional powers. We also present a sufficient condition for equality of chromatic number and circular chromatic number.
منابع مشابه
Measure preserving homomorphisms and independent sets in tensor graph powers
In this note, we study the behavior of independent sets of maximum probability measure in tensor graph powers. To do this, we introduce an upper bound using measure preserving homomorphisms. This work extends some previous results about independence ratios of tensor graph powers.
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملThe upper domatic number of powers of graphs
Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...
متن کاملOn Powers of Some Graph Operations
Let $G*H$ be the product $*$ of $G$ and $H$. In this paper we determine the rth power of the graph $G*H$ in terms of $G^r, H^r$ and $G^r*H^r$, when $*$ is the join, Cartesian, symmetric difference, disjunctive, composition, skew and corona product. Then we solve the equation $(G*H)^r=G^r*H^r$. We also compute the Wiener index and Wiener polarity index of the skew product.
متن کاملDistinguishing number and distinguishing index of natural and fractional powers of graphs
The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial automorphism. For any $n in mathbb{N}$, the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 17 شماره
صفحات -
تاریخ انتشار 2010